Altering macrophage and fibroblast responses with biomaterials for drug delivery, wound healing, and tissue engineering

نویسندگان

  • Hannah Bygd
  • Kaitlin Bratlie
  • Mufit Akinc
  • Surya Mallapragada
  • Ian Schneider
  • Balaji Narasimhan
چکیده

Even with significant advances in the development of biomaterials for drug delivery, tissue engineering scaffolds, artificial organs, and other medical devices, one obstacle that remains is a limited understanding of material biocompatibility. Ultimately, the success or failure of these biomaterials depends on the extent of the wound healing and foreign body response following implantation. As macrophage phenotype is dynamic throughout the course of these processes, this research targets these cells to engineer improved materials for modern healthcare applications, and to better understand the material parameters that influence biocompatibility. Evidence shows that polymeric systems can influence the function of macrophages, but little progress has been made in understanding the ways in which surface chemistries and materials properties can impact macrophage differentiation and reprogramming. Controlled M1 macrophage response and increased M2 macrophage presence is of particular importance for the integration of biomaterials in to the body. In wound healing, polymers may also influence collagen production by fibroblast cells, which can have an impact on the quality of tissue repair and the timeliness of healing. The quality of tissue developed in wound healing is dependent on collagen organization. Random collagen deposition is found in young, healthy skin, while welloriented collagen is typically associated with scar tissue. Achieving random collagen orientation in wound healing by exploiting biomaterial properties would be a vast improvement upon the imperfections of the natural wound healing process. This would ultimately have importance in the incorporation of implanted medical devices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of Polyurethane/Hyaluronic acid/Royal Jelly Electrospun Scaffold and Evaluating its Properties for Wound Healing

Background and purpose: Studies showed that biocompatible and biodegradable materials in tissue engineering can be used to heal wounds. The aim of this study was to fabricate polyurethane/royal jelly/hyaluronic acid scaffold with suitable biological properties for wound healing using electrospinning method. Materials and methods: In this applied experimental study, to make a nanofiber scaffold...

متن کامل

A Current View of Functional Biomaterials for Wound Care, Molecular and Cellular Therapies

The intricate process of wound healing involves activation of biological pathways that work in concert to regenerate a tissue microenvironment consisting of cells and external cellular matrix (ECM) with enzymes, cytokines, and growth factors. Distinct stages characterize the mammalian response to tissue injury: hemostasis, inflammation, new tissue formation, and tissue remodeling. Hemostasis an...

متن کامل

Role of growth factors and biomaterials in wound healing.

Wound healing is a biological complex process that involves several cell types under the control and regulation of several growth factors and cytokines. There have been efforts to study the therapeutic effects of granulocyte-macrophage colony-stimulating factor, platelet-derived growth factor, transforming growth factor-β, vascular endothelial growth factor and basic fibroblast growth factor on...

متن کامل

Macrophage differentiation and polarization on a decellularized pericardial biomaterial.

The monocyte-derived macrophage (MDM), present at biomaterial implantations, can increase, decrease or redirect the inflammatory and subsequent wound healing process associated with the presence of a biomaterial. Understanding MDM responses to biomaterials is important for improved prediction and design of biomaterials for tissue engineering. This study analyzed the direct differentiation of mo...

متن کامل

Bioactive polysaccharides from natural resources including Chinese medicinal herbs on tissue repair

Background Functional polysaccharides can be derived from plants (including herbs), animals and microorganisms. They have been widely used in a broad of biomedical applications, such as immunoregulatory agents or drug delivery vehicles. In the past few years, increasing studies have started to develop natural polysaccharides-based biomaterials for various applications in tissue engineering and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016